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RESUMEN: México es uno de los prin-
cipales productores de papaya en el 
mundo, posicionándose en el cuarto 
lugar en el ranking global. Este artícu-
lo explora el uso de redes neuronales 
convolucionales mediante el modelo 
pre-entrenado YOLOv11 para la detec-
ción del virus de la mancha anular en 
el cultivo de papaya (PRSV). El mode-
lo fue entrenado con 2,880 imágenes 
que incluyen plantas infectadas y sa-
nas, logrando una exactitud del 96.6%. 
Los resultados muestran una robusta 
capacidad de distinguir con eficacia 
entre ejemplares afectados por el virus 
y plantas saludables. Los modelos de 
aprendizaje profundo permiten proce-
sar volúmenes significativos de datos 
de imágenes de forma rápida y reali-
zar evaluaciones con un alto grado de 
exactitud, lo que optimiza la detección 
de plantas dañadas.
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ABSTRACT: Mexico is one of the world’s leading pro-
ducers of papaya, ranking fourth globally. This arti-
cle explores the use of convolutional neural networks 
through the pre-trained YOLO model to detect Papaya 
Ringspot Virus (PRSV) in papaya crops. The model was 
trained with 2,880 images of papaya plants infected 
with PRSV and healthy plants, achieving a high accu-
racy of 96.6%. The model is capable of distinguishing 
effectively between a plant that is infected with the virus 
from a healthy one. Deep learning models are capable 
of processing large volumes of image data quickly and 
performing evaluations with a high degree of accuracy, 
optimizing the detection of diseased plants.

KEYWORDS: Convolutional Neural Networks, Deep 
Learning, Papaya Crop, Papaya Ringspot Virus, 
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INTRODUCCIÓN
El cultivo de papaya es susceptible al padecimiento de una 
gran variedad de plagas y enfermedades de rápido de-



Revista Ingeniantes 2025 Año 12 No. 2 Vol. 3

174

sarrollo. La temprana detección de dichas plagas 
y enfermedades traen consigo múltiples beneficios, 
entre los que se destaca la reducción de costos al 
ahorrar en plaguicidas, lo que, a su vez, contribuye 
a salvaguardar la salud de los consumidores redu-
ciendo la presencia de los contaminantes derivados 
de estos productos [1], manteniendo el control de la 
enfermedad, evitando su propagación.

El papayo (Carica papaya L.) es una planta herbácea 
tropical nativa de México y Centroamérica [2]. Mé-
xico en particular es uno de los principales produc-
tores de papaya en el mundo, posicionándose en el 
cuarto lugar a nivel mundial [3].

El virus de la mancha anular en el cultivo de papaya 
(PRSV) ocupa el primer lugar a nivel mundial por su 
facilidad de transmisión, amplia distribución e impor-
tantes pérdidas de hasta el 100% en postcosecha y 
del 30% al 40% en cultivo [4].

Actualmente, no existe tratamiento químico capaz 
de eliminar el virus por completo, la única forma co-
nocida para su control es retirando y quemando por 
completo el cultivo infectado, de esa forma se evita 
su propagación a los cultivos sanos [1]. 

El método más simple para la detección de plagas 
y enfermedades es a través de la detección visual 
de los síntomas de dichas afecciones, sin embargo, 
este método depende completamente de la expe-
riencia del observador y es propensa a sesgos [5].

El desarrollo tecnológico ha conllevado una moder-
nización de la agricultura [6]. La visión artificial más 
particularmente ha tenido un importante papel en la 
detección de plagas y enfermedades en múltiples 
cultivos, generando múltiples proyectos que han lo-
grado una detección precisa.

En el trabajo de Hossen [7], se desarrolla un modelo 
de red neuronal convolucional con 30 épocas para 
la detección de cinco enfermedades en el cultivo 
de papaya, entre las que se encuentra el virus de 
la mancha anular. El trabajo se realizó con un total 
de 234 imágenes recolectadas de dataset públicas. 
Para evitar la distribución de las imágenes en 6 cla-
ses, se optó por hacer una clasificación binaria en-
tre las plantas sanas y enfermas. Lograron obtener 
un 91% de precisión, concluyendo que su modelo 
posee la capacidad de diferenciar cultivos sanos de 
los enfermos. 

Por su parte, Ajo Flores [8] decidió combinar técni-
cas moleculares (RT-PCR) con modelos de aprendi-
zaje profundo. Para llevar a cabo el trabajo, se reco-
lectaron imágenes multiespectral con un dron, para 
posteriormente hacer uso del modelo pre-entrena-
do YOLOv8 para la identificación de los cultivos de 

papayo, obteniendo una precisión del 91%. Una vez 
identificado el cultivo, se emplearon los resultados 
de las pruebas RT-PCR para identificar los cultivos 
que poseyeran el PRSV, obteniendo un 86% de pre-
cisión.

Ambos trabajos demuestran resultados positivos 
para la identificación de enfermedades en el cul-
tivo de papaya, sin embargo, en ambos casos se 
observan áreas de oportunidad para mejora. En el 
caso del trabajo de Hossen [7], se plantea la amplia-
ción del volúmen del conjunto de datos, ya que se 
considera que el volumen que obtuvieron es poco 
representativo y muy limitante. Además se plantea 
generar uno personalizado para el enfoque de este 
proyecto, para de esa forma evitar el uso de imáge-
nes generadas por inteligencia artificial. Por parte 
del trabajo de Ajo Flores [8], se hará uso del mismo 
modelo pre-entrenado, economizando el proyecto, 
sustituyendo el uso de drones por teléfonos móvi-
les, además de implementar el modelo directamen-
te para la identificación del PRSV.

El proyecto surge de la necesidad existente de fa-
cilitar la detección temprana del PRSV en huertas 
de la región de Coahuayana, Michoacán. La rápida 
propagación de esta enfermedad en los cultivos lo-
cales ha ocasionado pérdidas económicas signifi-
cativas, llegando incluso a contagiar la totalidad de 
cultivos productivos. Debido al nivel de impacto que 
tiene el PRSV en la producción y ganancias en el 
cultivo de papayo, el desarrollo de herramientas de 
bajo costo y métodos eficientes para su identifica-
ción oportuna se vuelve esencial. La implementa-
ción de herramientas accesibles y precisas podrían 
mitigar el impacto del virus, contribuyendo así a la 
seguridad alimentaria y el desarrollo económico de 
la región.

Se plantea la hipótesis que un modelo pre-entrena-
do puede detectar exitosamente la enfermedad del 
virus de la mancha anular en cultivos de papaya con 
una exactitud comparable o superior a los métodos 
tradicionales.

El objetivo principal del presente trabajo es imple-
mentar y evaluar un modelo convolucional pre-en-
trenado para la detección del PRSV en hojas y fru-
tos de la papaya, como base para el desarrollo de 
un aplicativo móvil de apoyo a agricultores locales. 
Esto con la intención de incrementar la economía 
local, y mejorar la salud alimentaria de la zona.

MATERIAL Y MÉTODOS
A través de una revisión sistemática de la literatu-
ra, se observa que numerosos estudios que imple-
mentan modelos de redes neuronales convolucio-
nales y reportan resultados exitosos han adoptado 
la metodología CRISP-DM, mostrada en la Figura 1. 
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Figura 1. CRISP-DM.
Fuente: Recuperada de Kaleb Schultz [10].

Figura 2. Arquitectura YOLOv11.
Fuente: Recuperada de Hidayatullah, Syakrani, Sholahuddin, 
Gelar, & Tubagus [12].

En consecuencia, este trabajo se basa en dicha me-
todología, la cual se estructura en las siguientes fa-
ses: comprensión del problema, comprensión de los 
datos –que abarca la adquisición y el etiquetado de 
las imágenes–, preparación de los datos –mediante 
técnicas de preprocesamiento de imágenes–, mo-
delado, evaluación del modelo –utilizando métricas 
de rendimiento como precisión (accuracy)–, y des-
pliegue del modelo.

En este trabajo, se decidió utilizar el modelo pre-en-
trenado YOLO en su decimoprimera versión (YO-
LOv11), específicamente en su variante classify nano 
(yolo11n-cls.pt), debido a que, hasta el momento de 
la implementación, la decimosegunda versión (YO-
LOv12) aún no contaba con una versión estable para 
tareas de clasificación. De acuerdo con los resul-
tados obtenidos por Madhu & Ravisankar [9], YO-
LOv5 demostró una superioridad en la detección de 
enfermedades en cultivos de algodón, superando 
a ResNet50 y VGG16. En el trabajo de Ajo Flores 
[8] YOLOv8 demostró un sólido desempeño en la 
detección de PRSV por lo que se considera un mo-
delo óptimo para implementar. Ultralytics en su do-
cumentación en el momento de la elaboración de 
este trabajo comentaba que los recientes modelos 
YOLO ofrecen un mejor rendimiento de vanguardia 
(SOTA) en varias tareas, entre ellas la detección de 
objetos, la segmentación, la estimación de la pose, 
el seguimiento y la clasificación [11]. Pese a que la 
mayoría de las investigaciones que han implementa-
do YOLO utilizan versiones anteriores, se cree que 
las mejoras que presenta la versión 11 se verán re-
flejadas en el entrenamiento y resultados, a su vez, 
este estudio se realiza con fines de investigación, 
buscando visualizar el rendimiento y precisión de 
decimoprimera versión en la tarea de clasificación 
e incentivar su uso para futuras investigaciones. En 
la Figura 2 se muestra la arquitectura implementada 
por YOLOv11.

El modelo YOLOv11 fue entrenado con un conjunto 
enriquecido de imágenes obtenidas directamente 
por los autores en condiciones reales de campo, lo 
que refuerza la aplicabilidad del modelo en esce-
narios reales de producción agrícola. En contraste 
con investigaciones previas, como la realizada por 
Hossen [7], donde se han desarrollado modelos de 
redes neuronales convolucionales para la clasifica-
ción de diversas enfermedades en los cultivos, este 
trabajo se enfoca exclusivamente en la detección 
del PRSV. Esta decisión responde a la alta tasa de 
pérdidas económicas que esta enfermedad gene-
ra en los cultivos de papaya, así como a su rápi-
da propagación, lo que hace prioritaria la detección 
temprana y precisa para la implementación de de 
medidas de control eficaces.

Una de las principales diferencias metodológicas 
con respecto a estudios previos radica en el uso de 
fotografías capturadas directamente en huertas de 
cultivo de papaya, asegurando así que las condicio-
nes de iluminación, ángulos de cámara y calidad de 
imagen sean representativas del entorno en el que 
los agricultores implementarían el modelo. Este en-
foque busca mejorar la capacidad del modelo para 
generalizar su aprendizaje y ofrecer un desempeño 
robusto en situaciones reales de campo. La hoja y 
el fruto fueron los objetos de interés para estos mo-
delos de clasificación.
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Figura 3 y 4. Ejemplares de papayo sano y papayo con presen-
cia del PRSV Anular en el Papayo.
Fuente: Elaboración propia.

Figura 5. Etiquetado, aumento de datos y división de dataset 
con Roboflow.
Fuente: Elaboración propia.

Adquisición y etiquetado de imágenes
Se recopiló un conjunto de 1200 imágenes utilizan-
do tres cámaras de teléfonos celulares inteligentes, 
de las cuales 600 corresponden a hojas y frutos de 
cultivos de papayo afectados por el PRSV y 600 a 
muestras de hojas y frutos en estado saludable. En 
las figuras 3 y 4 se muestran ejemplos de fotos to-
madas. La selección de teléfonos celulares inteligen-
tes como dispositivos de captura se basó en la apli-
cabilidad del modelo de entornos agrícolas reales, 
ya que su implementación está orientada a facilitar la 
detección de la enfermedad directamente en campo 
mediante imágenes tomadas con estos dispositivos, 
además de las limitaciones económicas con las que 
se realizó el presente trabajo. El conjunto de imáge-
nes de plantas de papayo utilizado en este trabajo 
fue recolectado manualmente de diversas huertas 
ubicadas en la región de Coahuayana, Michoacán. 
Las imágenes estaban distribuidas en dos categorías 
distintas, todas a color y en tres tamaños diferentes: 
2600x4624, 960x1280 y 1836x4080 píxeles, en for-
mato JPG.

El proceso de recolección de imágenes se llevó a 
cabo a lo largo de un semestre en huertas de tamaño 
moderado, asegurando la obtención de un conjunto 
de datos representativo de la variabilidad fenotípica 
del papayo en distintas condiciones ambientales y de 
desarrollo. Para garantizar una correcta clasificación 
de las imágenes, se empleó la plataforma Roboflow, 
la cual permitió realizar el etiquetado preciso de las 
muestras, separándolas en categorías según su es-
tado fitosanitario, la división del dataset fue aleatoria 
dando lugar a 840 imágenes en entrenamiento, 240 
en validación y 120 en prueba, siguiendo las reco-
mendaciones de la plataforma.

Preprocesamiento de imágenes
Se llevó a cabo un preprocesamiento de las imáge-
nes con el objetivo de optimizar su calidad y adap-

tarlas a los requerimientos del modelo de aprendi-
zaje profundo. Este proceso incluyó la aplicación de 
técnicas de aumento de datos aplicada al conjunto 
de datos de entrenamiento, con ayuda de la plata-
forma Roboflow, para incrementar la diversidad del 
conjunto de entrenamiento y mejorar la capacidad 
de generalización del modelo. Entre las técnicas uti-
lizadas se encuentran la inversión horizontal (espe-
jado), rotación con distintos ángulos y ajustes en los 
niveles de brillo, lo que permitió simular variaciones 
en las condiciones de captura y mitigar posibles 
sesgos en el entrenamiento. En la Figura 5 se mues-
tran las configuraciones empleadas en Roboflow.

Adicionalmente, todas las imágenes fueron redi-
mensionadas a una resolución de 640 x 640 píxeles, 
asegurando uniformidad en el conjunto de datos y 
optimizando la eficiencia computacional durante la 
fase de entrenamiento del modelo. Como resulta-
do de este proceso de aumento y estandarización, 
se generó un conjunto de entrenamiento con 2,520 
imágenes, lo que representa un incremento de 1,680 
imágenes. Para evitar el sesgo del modelo no se 
incluyeron imágenes con aumentación de datos en 
el conjunto de validación y pruebas.

Esta distribución del conjunto de datos sigue las 
mejores prácticas en el desarrollo de modelos de 
aprendizaje profundo, asegurando una evaluación ri-
gurosa y representativa del desempeño del modelo 
en la detección del PRSV en el papayo.

Hardware y Software utilizado
El proceso de entrenamiento, validación y prueba 
del modelo se llevó a cabo en un equipo de cómpu-
to con las especificaciones detalladas en la Tabla 
1. Asimismo, la recopilación de imágenes se reali-
zó utilizando teléfonos celulares inteligentes cuyas 
características también se muestran en dicha tabla. 
La información es relevante para comprender las 
condiciones de captura de imágenes y los recur-
sos computacionales utilizados en el desarrollo del 
modelo.
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Tabla 1. Características de hardware del equipo de desarrollo.

Fuente: Elaboración propia.

Fuente: Elaboración propia.

 Equipo Elemento Capacidad 

Laptop 

Memoria RAM 16 GB 
Disco Duro 480 GB 

Procesador AMD Ryzen 5 5500U 
@2.10GHz 

Sistema 
Operativo 

Windows 

Teléfono 
Celular 
Inteligente 1 

Memoria RAM 12 GB 
Disco Duro 512 GB 

Procesador 
Snapdragon 8+ Gen 1 
Mobile Plarform Octa-
core Max 3.0GHz 

Cámara 64 MP 
Sistema 
Operativo 

Android 

Teléfono 
Celular 
Inteligente 2 

Memoria RAM 4 GB 
Disco Duro 128 GB 

Procesador Snapdragon 680 Octa-
core Max 2.40GHz 

Cámara 50 MP 
Sistema 
Operativo 

Android 

Teléfono 
Celular 
Inteligente 3 

Memoria RAM 6 GB 
Disco Duro 256 GB 
Procesador Apple A16 Bionic 
Cámara 48 MP 
Sistema 
Operativo 

iOS 

 Recurso Especificación 
Sistema Operativo Ubuntu 20.04 LTS 
Unidad de 
Procesamiento 
Central  (CPU) 

Intel Xeon (2 núcleos, 
~2.3GHz) 

Memoria RAM 12.7 GB 
Unidad de 
Procesamiento 
Gráfico 

NVIDIA Tesla T4 

Memoria de la GPU 15 GB 
Almacenamiento en 
Disco 

112.6 GB de almacenamiento 
temporal 

Entorno de 
Desarrollo 

Python 3.8+, Jupyter 
Notebook integrado 

Conectividad Soporte para bibliotecas en la 
nube y acceso a Google Drive 

Figura 6. Proceso de entrenamiento del modelo YOLO11n-cls.
pt en Python.
Fuente: Elaboración propia.

Tabla 2. Características de la máquina virtual de Google Co-
laboratory utilizada.

Se utilizó Roboflow para automatizar varias etapas 
del procesamiento de imágenes, optimizando la 
preparación del dataset para su posterior uso en el 
modelo de aprendizaje profundo.

Para la implementación del modelo y el preproce-
samiento del conjunto de datos, se eligió el len-
guaje de programación Python debido a su amplia 
compatibilidad con bibliotecas especializadas en 
aprendizaje automático y visión por computadora, 
como Tensorflow, Keras, PyTorch y OpenCV. La 
versatilidad de Python, junto con su extensa comu-
nidad de desarrollo, permitió la integración eficiente 
de diversas herramientas para el preprocesamien-
to, entrenamiento y evaluación del modelo. La Figu-
ra 6 muestra la línea de código en Python empleada 
para el entrenamiento del modelo.

putacionales avanzados, incluyendo unidades de 
procesamiento gráfico (GPU), lo que permite acele-
rar significativamente el entrenamiento del modelo. 
Además, su integración con Google Drive facilita el 
almacenamiento y la gestión de los datos sin la ne-
cesidad de infraestructura local adicional. La Tabla 
2 se observan las características de la máquina vir-
tual proporcionada por Google Colaboratory en su 
versión gratuita, el uso de esta infraestructura en la 
nube permite entrenar el modelo de manera eficien-
te sin requerir equipos locales de alto rendimiento, 
garantizando así un proceso de experimentación 
ágil y escalable.

Configuración del modelo YOLO11n-cls.pt
Los hiperparámetros utilizados en el modelo YO-
LOv11, detallados en la Tabla 3, se basaron princi-
palmente en las configuraciones predeterminadas 
del framework Ultralytics. Entre las adaptaciones 
implementadas se destaca el ajuste del número de 
épocas para equilibrar la convergencia del modelo 
y evitar el sobreajuste, la selección de la arquitec-
tura YOLOv11n-cls.pt optimizada para clasificación, 
y la integración de un conjunto de datos especia-
lizado compuesto por imágenes de papaya en dos 
estados: asintomático e infectado por el PRSV. Esta 
configuración garantizó la reproducibilidad del ex-
perimento y se alineó con los estándares metodoló-
gicos empleados en visión artificial para el diagnós-
tico de enfermedades vegetales. Dada la limitación 
de los recursos computacionales, se optó por hacer 
uso de 35 épocas por el tiempo de ejecución que 
tarda en entrenarse el modelo, el cual fue de 1.277 
horas.

Dado que el procesamiento y entrenamiento del 
modelo requiere un alto poder computacional y 
considerando las limitaciones de hardware locales, 
se optó por utilizar Google Colaboratory como en-
torno de desarrollo en la nube. Google Colabora-
tory proporciona acceso gratuito a recursos com-
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cias significativas, lo que sugiere una capacidad de 
generalización robusta ante datos no observados 
durante el entrenamiento. Complementariamente 
la exactitud como métrica de evaluación, demostró 
un incremento progresivo desde un 80% hasta es-
tabilizarse arriba del 95% corroborando la eficacia 
de la configuración de hiperparametros implemen-
tada (resolución espacial de 640 x 640 píxeles, ar-
quitectura YOLO11n-cls.pt). Si bien estos resultados 
indican un aprendizaje exitoso, la proximidad de la 
pérdida de entrenamiento a valores mínimos abso-
lutos justifica una evaluación rigurosa de sobreajus-
te mediante un conjunto de pruebas independiente.

Métricas de evaluación
Las métricas de evaluación implementadas son las 
siguientes: exactitud Ec.1, precisión Ec.2, sensibilidad 
Ec.3, especificidad Ec.4, y el F1 score Ec.5. Todas 
las métricas se basan en la matriz de confusión [13].

Ec. (1)

Ec. (2)

Ec. (3)

Ec. (4)

Ec. (5)

Conjunto de datos de pruebas
El modelo demostró una capacidad predictiva ro-
busta en la identificación del PRSV en tejidos de 
la papaya, alcanzando una sensibilidad del 100% 
(64/64 muestras infectadas correctamente clasifi-
cadas) en condiciones que el modelo nunca había 
visto en su etapa de entrenamiento y validación. No 
obstante, en la detección del tejido sano, se regis-
tró una especificidad del 92.68% (52/56 muestras 
asintomáticas identificadas con éxito), lo que sugie-
re la presencia de falsos positivos en un 7.14% de 
los casos.
Finalmente, se obtuvo un 96.6% de exactitud y una 
precisión del 94.12%. El F1 score obtenido fue del 
96.96%, demostrando la fortaleza que posee el mo-
delo en la identificación del PRSV.

CONCLUSIONES
Con base en la exactitud (accuracy) del 96.6% ob-
tenida en pruebas por el modelo YOLOv11, entre-
nado con un conjunto de datos de 2,880 imágenes 
durante 35 épocas, se concluye que es capaz de 
identificar con eficacia la presencia del PRSV en la 
papaya tanto en los frutos como en las hojas de la 

 Hiperparámetro Valor 
Task Classify 
Mode Train 
Epochs 35 
Batch size 16 
Model Yolo11n-cls.pt 
Imgsize 640x640 
Momentum 0.937 
Optimizer Adam 
Learning rate 0.01 

Fuente: Elaboración propia.

Tabla 3. Hipeparámetros utilizados en el modelo YO-
LO11n-cls.pt.

Figura 7, 8 y 9. Pérdida y Accuracy en las fases de Entrena-
miento y Validación del modelo YOLOv11.
Fuente: Elaboración propia.
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RESULTADOS
Conjunto de datos de entrenamiento y validación
Como se ilustra en las figuras 7, 8 y 9, el análisis de 
las curvas de entrenamiento y validación evidencia 
un comportamiento coherente del modelo YOLOv11 
en la tarea de clasificación fisiopatológica. La curva 
de pérdida en entrenamiento exhibió una reducción 
monotónica desde un valor inicial de 0.4 hasta al-
canzar una convergencia cercana a 0 (0.0) al finali-
zar las 30 épocas, reflejando una optimización efec-
tiva de los parámetros del modelo. 

En contraste, la curva de pérdida en validación 
descendió de 0.7 a 0.1 durante el mismo período, 
manteniendo una trayectoria paralela sin divergen-
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planta. Además, la adecuada configuración de los 
hiperparámetros del modelo permitió reducir el 
costo computacional y prevenir problemas como el 
sobreajuste. 

En comparación con el trabajo de Ajo Flores [8] el 
modelo entrenado en el presente trabajo superó en 
exactitud la solución propuesta por el autor en un 
10.68%. Por su parte, el modelo superó al modelo 
entrenado por Hossen [7] en un 5.6% de exactitud, 
lo cual se le atribuye a que en este trabajo se contó 
con un dataset amplio y dedicado para la problemá-
tica presentada.

El presente trabajo es un aporte relevante a la agri-
cultura local en el control del PRSV a través de he-
rramientas modernas, ya que, pese a ser un virus 
con mucho impacto en el cultivo de papaya, no es 
un tema ampliamente abordado. Gracias a este tra-
bajo se ha logrado identificar y clasificar ejempla-
res dañados por el PRSV con el fin de detectar y 
erradicar esta amenaza en cualquier etapa del cul-
tivo, además el tiempo del proceso de revisión de 
las plantas que realizan los agricultores se podría 
ver minimizado.

A pesar del buen desempeño alcanzado, el modelo 
presenta ciertas limitaciones que deben ser consi-
deradas, entre ellas la posibilidad de probar el mo-
delo en ambientes con diferencias drásticas, puesto 
que las condiciones de los huertos son similares, lo 
que puede causar resultados erróneos. A su vez, se 
presenta la necesidad de validar el modelo con di-
ferentes ciclos de crecimiento y calidades de imá-
genes.

Como trabajo a futuro, se plantea la implementación 
del modelo generado en este trabajo en un aplica-
tivo móvil que permita su uso en campo, y de esa 
manera, ser una herramienta de apoyo para los agri-
cultores locales.

AGRADECIMIENTOS
Agradecimientos a los propietarios de las huertas, 
los cuales nos permitieron tomar fotografías a sus 
cultivos. En especial, al agricultor que nos guió en 
cada una de las visitas al campo, además de brin-
darnos más detalles e información respecto a la 
identificación y tratamiento del PRSV. Sin ellos no 
hubiese sido posible la realización de este trabajo.

BIBLIOGRAFÍA 
[1] Gobierno del Estado de Colima. (2015). Guía 
Para El Control De Plagas Y Enfermedades En El 
Cultivo Del Papayo, En El Estado De Colima. Co-
lima, México.

[2] Bermúdez Guzmán, M. de J., Guzmán Gonzá-
lez, S., Lara Reyna, J., Palmeros Suárez, P. A., 

López Muraira, I. G., y Gómez Leyva, J. F. (2018). 
Presencia de Papaya ringspot virus (PRSV) en ar-
venses asociadas a Carica papaya en Colima, 
México. Revista mexicana de fitopatología, 36(1). 

[3] Burns, P., Saengmanee, P., y Doung-Ngern, U. 
(2022). Papaya: The Versatile Tropical Fruit. En 
Tropical Plant Species and Technological Inter-
ventions for Improvement (pp. 1–14). IntechOpen. 

[4] Valderrama Alfaro, S. M., y Sedano Saavedra, 
C. (2013). Caracterización Sintomatológica Y De-
terminación De Virus Que Infectan Al Cultivo De 
Carica Papaya L., En Algunas Zonas Del Norte Del 
Perú [Tesis de maestría]. Universidad Nacional De 
Trujillo, Perú.

[5] Venbrux, M., Crauwels, S., y Rediers, H. 
(2023). Current and emerging trends in techni-
ques for plant pathogen detection. Frontiers in 
Plant Science, 14. 

[6] Carrillo Riofrío, F. M., Segovia Cáceres, S. M., 
y Jijon Paredes, E. M. (2021). La Innovación en la 
Agricultura Digital. Dominio de las ciencias, 7(3), 
1652–1658.

[7] Hossen, S., Haque, I., Islam, S., Ahmed, T., 
Nime, J., y Islam, A. (2020). Deep learning based 
classification of papaya disease recognition. En 
Proceedings of the 3rd International Conference 
on Intelligent Sustainable Systems (pp. 945–951). 
Thoothukudi, India: Institute of Electrical and Elec-
tronics Engineers Inc. 

[8] Ajo Flores, R. E., Eras Zamora, E. A., y García 
Baño, X. P. (2023). Detección temprana de Pa-
paya ringspot virus (PRSV) en cultivos de papaya 
(Carica papaya) usando imágenes multiespectra-
les y aprendizaje profundo relacionado con téc-
nicas moleculares [Proyecto integrador]. Escuela 
Superior Politécnica del Litoral, Guayaquil, Ecua-
dor. Recuperado de https://www.dspace.espol.
edu.ec/handle/123456789/58408

[9] Madhu, S., y Ravisankar, V. (2025). Compre-
hensive Analysis of a YOLO-based Deep Learning 
Model for Cotton Plant Leaf Disease Detection. 
Engineering, Technology and Applied Science Re-
search, 15(1), 19947–19952. 

[10] Kaleb Schultz (2025). Understanding the 
Role of Knowledge Intelligence in the CRISP-
DM Framework: A Guide for Data Science Pro-
jects. Obtenida el 11 junio de 2025, de la página 
electrónica https://enterprise-knowledge.com/
understanding-the-role-of-knowledge-intelli-
gence-in-the-crisp-dm-framework-a-guide-for-
data-science-projects/.



Revista Ingeniantes 2025 Año 12 No. 2 Vol. 3

180

[11] Ultralytics. (2025). YOLO: Breve historia. Re-
cuperado el 11 de junio de 2025, de https://docs.
ultralytics.com/es/#yolo-a-brief-history.

[12] Hidayatullah, P., Syakrani, N., Sholahud-
din, M. R., Gelar, T., y Tubagus, R. (2025). *YO-
LOv8 to YOLO11: A Comprehensive Architecture 
In-depth Comparative Review*. arXiv preprint 
arXiv:2501.13400. Recuperado de https://doi.
org/10.48550/arXiv.2501.13400.

[13] Google (2025). “Google Colaboratory,”. Re-
cuperado el 05 de septiembre de 2025 de https://
colab.google/.

[14] J. R. Macas Bermeo, “Desarrollo De Una Apli-
cación Para La Detección De Plagas En El Cultivo 
De Papas Aplicando Redes Neuronales Convolu-
cionales,” Tesis de grado, Universidad Técnica 
de Machala, Machala, Ecuador, 2022, pp. 45.


